
/about/ /projects/ /portal/ mailto:

Looking for more? My book The Elements of User Experience puts information
architecture and interaction design in context for beginners and experts alike. You can now
order the book from Amazon.com.

A visual vocabulary
for describing information architecture and interaction design

version 1.1b (6 March 2002)

Jesse James Garrett
jjg@jjg.net

Translations of this document are available:

Chinese (thanks to Arky Tan)
Japanese (thanks to Atsushi Hasegawa)
Russian (thanks to Philipp Chudinov)
Spanish (thanks to Javier Velasco)
Italian (thanks to Laura Caprio and Beatrice Ghiglione)
French (thanks to Francois Lamotte)
German (thanks to Marcus Brinckhoff)

Table of Contents

1. Summary
2. Version history
3. Initial considerations
4. Conceptual underpinnings
5. Simple elements: pages, files, and stacks thereof
6. Creating relationships: connectors and arrows
7. All at once: concurrent sets
8. Breaking it up: continuation points
9. Commonalities: areas and iterative areas

10. Reusable components: flow areas and references
11. Basic concepts for conditional elements
12. Making choices: decision points
13. Pathfinding: conditional connectors and arrows
14. Multiple choice: conditional branches
15. Choose one or more: conditional selectors
16. One decision, many paths: clusters
17. Some restrictions may apply: conditional areas
18. Conclusion
19. Downloadable shape libraries

Summary

Diagrams are an essential tool for communicating information architecture and interaction
design in Web development teams. This document discusses the considerations in
development of such diagrams, outlines a basic symbology for diagramming information



architecture and interaction design concepts, and provides guidelines for the use of these
elements.

Version history

1.1b (6 Mar 2002)
Information on built-in support in OmnGraffle 2.0
New shape library for iGrafx Flowcharter

1.1a (17 Sep 2001)
New shape libraries for Macromedia FreeHand
Posted cheat sheet and PDF shape template

1.1 (31 Jan 2001)
Added the filestack element
Added the conditional selector element
Modified the arrow element to allow multiple arrowheads
Modified the cluster element's behavior so that it now appears only downstream from
a conditional branch or selector
Modified the conditional branch element's behavior to allow for a null result
Numerous improvements to the shape libraries
New shape library for Adobe InDesign

1.0 (17 Oct 2000)
Initial release

Initial considerations

A visual vocabulary is a set of symbols used to describe something (usually a system,
structure, or process). The vocabulary described here may be used by an information
architect or interaction designer to describe, at a high level, the structure and/or flow of
the user experience of a Web site.

These descriptions, or diagrams, are used by five primary audiences:

Project sponsors and managers use them to obtain a general sense of the scope
and form of the project.
Content producers use them to derive content requirements.
Visual and interface designers use them to derive a count of how many unique
page designs must be produced, and to obtain an initial sense of the navigational
and interface requirements for these designs.
Technologists use them to derive functional requirements.
Information architects and interaction designers use them to develop detailed
navigational and interface requirements for each page.

Every one of these audiences (with the exception of sponsors) needs a great deal of detail
to do their jobs. The trouble is that the detail each audience requires differs vastly from
the detail required by others, and the bulk of this detail is irrelevant to the needs of other
audiences.

The sensible approach is to limit the detail in the diagram to that which can be usefully
applied by all audiences. The diagram thereby serves as a touchstone document for the
development of more detailed documents specific to the needs of each audience.

Some other key requirements of a visual vocabulary for information architecture and
interaction design include:

Whiteboard-compatible: The vocabulary should be simple enough that diagrams
can be sketched quickly by hand. The elements of the vocabulary should be distinct
enough from each other that moderately sloppy drawing cannot compromise the
clarity of the diagram.



Tool-independent: The vocabulary should be designed so that specialized software
tools are not required in order to construct diagrams. The vocabulary should not
favor the use of any particular software tool, but should instead enable architects to
work with the tools they are most comfortable using.
Small and self-contained: Because the diagrams are used by a diverse range of
audiences with differing levels of knowledge of (or even interest in) diagramming
systems used in other areas of technical development, the vocabulary should not
require such knowledge or interest. The total set of elements should be kept as small
as possible, maintaining a strict one-to-one correlation between concepts and
symbols, so that the vocabulary can be learned and applied quickly. The concepts
expressed by a diagram may be arbitrarily complex; the means of their expression
should not be.

Conceptual underpinnings

Information architecture and interaction design are two sides of the same coin. (See "The
Elements of User Experience" for definitions of these terms as they are used here.)
Diagrams of contemporary sites inevitably involve both sides. But for each, the objectives
of the diagram are slightly different.

In both cases, the diagram focuses on what we call macrostructure, providing just
enough detail to enable team members to get the "big picture". The task of the architect is
to determine the appropriate level of detail to meet this objective. The specific page-level
detail, or microstructure, is detailed in other documents that the architect may not be
primarily responsible for developing.

When describing information architecture, the diagram should emphasize conceptual
structure and organization of content. Note that conceptual structure is not the same as
navigational structure. The objective of the information architecture diagram is not to
provide a full-blown navigational specification; this level of detail is best kept in other
documents, where it is less likely to confuse and distract.

When describing interaction design, the diagram should emphasize how the user flows
through defined tasks, and what the discrete steps are within these tasks. As with
navigation, details of interface should not appear in the diagram -- if you find yourself
drawing buttons and fields, you're probably loading the diagram down with excess detail.

This vocabulary is based on a simple conceptual model encompassing both information
architecture and interaction design:

The system presents the user with paths.
The user moves along these paths through actions.
These actions then cause the system to generate results.

Simple elements: pages, files, and stacks thereof

The basic unit of user experience on the Web is, of course, the page, which we represent
as a simple rectangle. Note that the page is a unit of presentation, not (necessarily) a unit
of implementation -- one page in your diagram may correspond to multiple HTML files (as
in a frameset interface) or multiple units of code (as in a server-side include or database-
driven implementation).

In addition to pages, there are also files, parcels of data without navigational properties.
Files are delivered to the user for use outside a Web browser environment (such as audio
or video files, stand-alone documents like PDFs, or executables). For these, we use our old
friend the dog-eared document icon.



Figure 1a: [left] The page and the file
Figure 1b: [right] The pagestack and the filestack

Use a pagestack to indicate a group of functionally identical pages whose navigational
properties are immaterial to the macrostructure of the site. Similarly, a filestack
represents a group of files that receive identical navigational treatment and can be
classified as a single entity (such as a collection of downloadable games or a library of PDF
instruction manuals).

We use labels on pages and files to identify them. These don't need to correlate to actual
designations such as HTML <TITLE> elements or filenames, but they do need to be unique
for each page or file in the diagram. Unique numeric identifiers and type designations also
provide a good way to keep track of all the pages and files in your diagram.

Creating relationships: connectors and arrows

Relationships between elements are depicted with simple lines or connectors. These
conceptual relationships will inevitably translate into navigational relationships -- but not all
navigational relationships will appear in the diagram.

In the case of information architecture, these relationships are commonly reflected through
a hierarchical organization of pages into trees. However, this is by no means required or
even (in some cases) recommended.

Figure 2a: [left] A simple tree structure
Figure 2b: [right] The same structure as in 2a, diagrammed differently

When diagramming interaction design, our connectors also need to convey directionality
to indicate how the user will move through the system toward completion of a particular
task. Turning our connectors into arrows will do the trick nicely. We use the terms
downstream and upstream to refer to the position of elements relative to this forward
movement.

Note that these arrows are not like the arrows indicating a one-way street, but rather like
the arrows indicating the way to the food court in the mall. The user is not prohibited from
moving in the opposite direction; the arrow merely indicates the direction in which the user
is likely to want to go.



Figure 3a: [top left] Arrow indicates downstream movement toward task completion
Figure 3b: [bottom left] Crossbar indicates upstream movement is not permitted

Figure 3c: [right] Multiple arrowheads clarify directionality

If for some reason we want to prohibit this upstream movement (such as in cases where
some irreversible action like deleting a record has taken place), we use a crossbar (just a
short perpendicular line) on the opposite end of the arrow to indicate this.

In some cases, it may be necessary to place an additional arrowhead near the upstream
page to clarify the directionality of the flow in a more complex architecture. (A practical
note: Many diagramming applications do not allow the user to string arrows together in this
fashion. To work around this, the shape libraries include a "gluedot" element, an invisible
element consisting of a single connection point. Use this element to connect arrows
together.)

Connectors and arrows can also be labeled, but the use of these should be limited to cases
in which the action taken by the user needs to be clarified. If the labels become long and
unwieldy and start to clutter the diagram, point the reader toward a footnote or appendix
entry.

In the examples given throughout this document, footnote or appendix references will
appear as a number and letter combination in parentheses. Numbers refer to the diagram
page on which the reference appears; letters refer to the specific note. For example, the
first note on page 3 of a diagram would be referenced as (3a), the second (3b), and so
forth.

Figure 4a: [left] A superfluous label
Figure 4b: [middle] A useful label

Figure 4c: [right] A footnote or appendix reference

All at once: concurrent sets

A concurrent set (represented by the half-circle) is used in cases where a user action
generates multiple, simultaneous results (such as spawning a pop-up window at the same
time a page is loaded in the main window, or displaying a page while a file is being
downloaded).



Figure 5: A concurrent set

Like arrows, concurrent sets are directional. Upstream elements connect to the curved
side; downstream elements connect to the flat side.

Breaking it up: continuation points

Information architects often find themselves yearning for ever-larger sheets of paper on
which to diagram their work. But even if large-format output devices such as plotters were
widely available, some architectures are simply too complex to capture in a single, all-
encompassing diagram.

To allow us to separate our diagrams into easily digestible sections, we use continuation
points (square brackets) to bridge the gaps between pages.

Figure 6a: [left] A "continue to" point refers the reader to another diagram
Figure 6b: [right] A "continue from" point, picking up where 6a left off

A single continuation point may list one or more sources or destinations as needed. The
orientation of the brackets (horizontal or vertical) carries no particular meaning; the choice
of orientation is a matter of the architect's aesthetic judgment.

Commonalities: areas and iterative areas

The area element (a rounded-corner rectangle) is used to identify a group of pages that
share one or more common attributes (such as appearing in a pop-up window, or having
some unique design treatment). Use labels to identify these attributes or (as with
connectors), refer to notes elsewhere in the document if you have a lot to say.

Figure 7: An example use of an area to represent a pop-up window

Many architectures involve repeating the same basic structure as it is applied to a number
of functionally identical information elements. For example, you may have a product



catalog in which each product has a number of pages associated with it. You could draw an
instance of this structure for each product, but why waste your time? Just use an
iterative area -- a stack of rounded-corner rectangles -- instead.

Figure 8: An example use of an iterative area to represent a repeated structure in a product catalog

Note that connectors and arrows don't actually point to the areas themselves. The area
elements serve only to enclose the pages. Areas should be applied carefully -- it's very
easy to get caught up capturing all kinds of details with area elements that don't manifest
in the user experience (such as which pages are hosted on which servers) or otherwise
interfere with the diagram's overall objective of communicating the macrostructure.

Reusable components: flow areas and references

Some interaction designs require a sequence of steps (like a login procedure, for instance)
to appear repeatedly in different contexts throughout the design. Often these sequences
are merely a component of one or more larger tasks the user is trying to accomplish. (This
is analogous to the concept of a subroutine in computer programming.)

Such a reusable sequence is called a flow, and it is represented in the diagram through
two elements: the flow area, which encloses the flow itself; and the flow reference,
which serves as a sort of "placeholder" for the flow in every context in which it is repeated.
Both elements have the same basic shape, a rectangle with the corners clipped off (or, if
you prefer, a distorted octagon).

Figure 9a: [left] A flow reference serves as both a "continue to" point and a "continue from" point
Figure 9b: [right] The flow area referenced in 9a

Flow areas also require the use of two special types of continuation points: entry points
and exit points. These are placed outside the flow area, while continuation points within
the flow area indicate that the flow spans multiple diagrams.



Flow references themselves function very much like continuation points. The objective of
both types of elements is the same: to allow the architect to break up the diagram across
pages. The difference is that a flow reference can serve in both the "continue to" and
"continue from" capacities, while a continuation point can only be one or the other. If you
don't need an element to play both roles, you probably don't need to use a flow.

Basic concepts for conditional elements

With increasing frequency, information architectures and interaction designs are reshaped
dynamically by the system as the user moves through the site. This reshaping is
accomplished by means of conditional logic, and the remaining elements of this
vocabulary are specific to conditional logic structures. Here's a basic conceptual model for
application of conditional elements:

The system keeps track of one or more attributes. These attributes may be
particular to:

the user (such as user type)
the session (such as login status)
the content being accessed (such as subject matter)
or they may exist "in the world" (such as the time or date).

Attributes have values ("3 p.m." is one possible value for "time of day").
The association of an attribute with a particular value is called a condition.
Conditions are evaluated by the system to determine if they are true.

In a static architecture, every path is presented to every user under every circumstance,
and each path always leads to the same result. In a dynamic architecture, the system
decides which paths or results are presented to the user based upon evaluating one or
more conditions.

To minimize clutter in our diagrams, these conditions are typically described in a footnote
or appendix entry accompanying the diagram.

Making choices: decision points

When one user action may generate one of a number of results, the system must make a
decision about which result is to be presented. (Perhaps the most common example of this
is error handling on form submission.) We call this a decision point, and as in traditional
flow charts, it is represented by a diamond.

Figure 10: An example use of a decision point in a login sequence

Note that arrows must be used in conjunction with decision points to clarify whether
associated elements are upstream or downstream from the decision point.



Pathfinding: conditional connectors and arrows

A conditional connector (represented by a dashed line) is used when a path may or may
not be presented to the user depending upon whether one or more conditions are met.

Figure 11a: [left] A conditional connector
Figure 11b: [right] A conditional arrow

For example, there may be a page containing sensitive information that only company
employees should have access to. The condition in this case would be the user type
(employee); if the condition is met, the path is made available. If not, no path exists.

Multiple choice: conditional branches

When the system must select one path among a number of mutually exclusive options to
be presented to the user, we use a conditional branch (triangle). Upstream elements
connect to one point of the triangle; downstream elements connect to the opposite side.

Figure 12: A conditional branch

The example shown in figure 12 looks a lot like the decision point example above in figure
10, but the behavior described here is quite different. In the decision point example, only
one path (or navigational element) was presented to the user; where that path took the
user was dependent upon certain conditions.

In figure 12, the system is making a similar decision, but it happens before the user
action. The conditional branch indicates that the system is deciding which path will be
presented to the user. The paths from page A to pages B, C, and D are mutually exclusive;
for example, if a path to B exists, paths to C and D do not.

As with conditional connectors and arrows, a conditional branch may provide the user with
no path at all (a null result). The difference here is that with a conditional branch a null
result may not be permitted at all; and if it is permitted, it is one of three or more possible
results. Indicate whether the branch permits a null result in your footnote or appendix
entry.

Choose one or more: conditional selectors

The conditional selector element (represented by a trapezoid) functions much like the
conditional branch, with one important difference: with the selector, the various
downstream paths are not mutually exclusive. any number of the paths that fulfill the
condition(s) may be presented to the user.



Figure 13: A conditional selector

The most common application of the conditional selector is in results generated by a search
engine. In this case, the search results page would appear upstream from the selector; the
condition is the search criteria input by the user; the downstream paths would lead to the
content pages indexed by the search engine. As with a conditional branch, a conditional
selector may generate a null result -- in fact, this is far more common with a selector than
with a branch.

One decision, many paths: clusters

Some conditional structures require that the system present more than one path based
upon certain conditions. We associate these paths together in the structure with a cluster
(represented by a circle). The cluster can appear downstream from either a conditional
branch or a conditional selector.

Figure 14: A cluster downstream from a branch

The structure illustrated in Figure 14 functions pretty much like a normal conditional
branch, but for one condition we are presenting more than one path to the user. So if the
attribute being evaluated has value x, the user sees a path to page B; but if the attribute
has value y, the user sees paths to both page C and page D.

Some restrictions may apply: conditional areas

When one or more conditions applies to a group of pages, those pages are enclosed within
a conditional area -- a rounded-corner rectangle like a standard area, but with the



dashed-line treatment of a conditional connector.

Figure 15: An example use of a conditional area where a secure connection is required

Conditional areas are applied most commonly in situations involving access permissions,
such as when a valid login or encrypted (SSL) connection is required. Unlike the other
types of areas, conditional areas are associated with a result, which is generated in the
event that the condition(s) are not fulfilled.

Conclusion

If you'd like to see how the whole system comes together, here's a sample diagram of the
information architecture and interaction design of MetaFilter. (I wasn't involved in the
development of this site; this diagram was simply reverse-engineered from it.)

Scott Larson created this handy cheatsheet for quick reference to the various conditional
elements. And for those interested in creating their own shape libraries for use with an
application other than the ones below, here's a PDF of all the shapes (thanks to Ross Olson
for the suggestion).

This vocabulary necessarily represents only a first step. As information architecture and
interaction design for the Web continue to evolve, situations will inevitably arise that this
vocabulary does not address. Your feedback and recommendations for the next revision of
this vocabulary are welcome.

Downloadable shape libraries

OmniGraffle for Mac OS X is the first application to ship with built-in support for the
visual vocabulary. OmniGraffle is currently pre-installed on all Apple Power Macs and
PowerBooks. It can also be downloaded from the Omni site.

PocketDraw 2.0 for the PocketPC includes a built-in visual vocabulary palette for the
information architect on the go. You can see examples at the PocketDraw site or on Mike
Lee's weblog.

Other shape libraries available:

Stencil file for Visio 2000
Stencil file for Visio 5
Stencil file for Visio 4
PowerPoint file
Library file for Adobe InDesign 2.x (thanks Andrew Robinson)
Library file for Adobe InDesign 1.x
Library file for FreeHand 10 (thanks Andrew Crow)
Library file for FreeHand 9 (thanks Andrew Crow)



Illustrator EPS file
Library file for iGrafx Flowcharter 2000 (thanks Andrew Robinson)
Library file for OpenOffice (thanks Nelson Rodriguez-Peña)
Collection of EPS files containing one element per file, suitable for import into other
applications (1.1 MB)

© 2000-2002 Jesse James Garrett
This document: http://www.jjg.net/ia/visvocab/
More IA resources: http://www.jjg.net/ia/


